Login

Manitoba Moose
GP: 24 | W: 8 | L: 14 | OTL: 2 | P: 18
GF: 56 | GA: 97 | PP%: 12.90% | PK%: 84.85%
GM : Alexandre Rivard | Morale : 50 | Team Overall : N/A
Next Games #400 vs Coachella Valley Firebirds
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Manitoba Moose
8-14-2, 18pts
1
FINAL
4 Iowa Wild
21-1-1, 43pts
Team Stats
SOL1StreakW2
5-7-1Home Record11-1-1
3-7-1Home Record10-0-0
5-4-1Last 10 Games9-0-1
2.33Goals Per Game3.61
4.04Goals Against Per Game0.83
12.90%Power Play Percentage11.86%
84.85%Penalty Kill Percentage92.59%
Toronto Marlies
7-14-4, 18pts
4
FINAL
3 Manitoba Moose
8-14-2, 18pts
Team Stats
SOW1StreakSOL1
4-5-3Home Record5-7-1
3-9-1Home Record3-7-1
3-5-2Last 10 Games5-4-1
2.08Goals Per Game2.33
4.04Goals Against Per Game4.04
11.76%Power Play Percentage12.90%
84.00%Penalty Kill Percentage84.85%
Manitoba Moose
8-14-2, 18pts
Day 60
Coachella Valley Firebirds
15-8-1, 31pts
Team Stats
SOL1StreakW1
5-7-1Home Record7-4-1
3-7-1Away Record8-4-0
5-4-1Last 10 Games9-1-0
2.33Goals Per Game3.08
4.04Goals Against Per Game3.08
12.90%Power Play Percentage20.55%
84.85%Penalty Kill Percentage95.45%
Abbotsford Canucks
20-5-0, 40pts
Day 62
Manitoba Moose
8-14-2, 18pts
Team Stats
W4StreakSOL1
10-2-0Home Record5-7-1
10-3-0Away Record3-7-1
8-2-0Last 10 Games5-4-1
3.40Goals Per Game2.33
1.00Goals Against Per Game2.33
12.96%Power Play Percentage12.90%
88.78%Penalty Kill Percentage84.85%
Manitoba Moose
8-14-2, 18pts
Day 64
Rochester Americans
24-0-1, 49pts
Team Stats
SOL1StreakW2
5-7-1Home Record11-0-1
3-7-1Away Record13-0-0
5-4-1Last 10 Games9-0-1
2.33Goals Per Game3.56
4.04Goals Against Per Game3.56
12.90%Power Play Percentage18.82%
84.85%Penalty Kill Percentage93.22%
Team Leaders
Goals
Philip Broberg
1
Assists
Philip Broberg
13
Points
Philip Broberg
14
Plus/Minus
Philip Broberg
9

Team Stats
Goals For
56
2.33 GFG
Shots For
698
29.08 Avg
Power Play Percentage
12.9%
4 GF
Offensive Zone Start
34.3%
Goals Against
97
4.04 GAA
Shots Against
1017
42.38 Avg
Penalty Kill Percentage
84.8%%
5 GA
Defensive Zone Start
41.3%
Team Info

General ManagerAlexandre Rivard
DivisionSOUTHEAST
ConferenceConference 1
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,806
Season Tickets300


Roster Info

Pro Team20
Farm Team19
Contract Limit39 / 250
Prospects101


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Sam GagnerXX100.00633792677278776668636564698577454900352775,000$
2Mackenzie MacEachernX100.00723890627978745963645861627072535000301775,000$
3Matthew PecaX100.00583792646785756274666062637173385000311700,000$
4MacKenzie EntwistleX100.00785686638479856275596064586566635000252850,000$
5Boris Katchouk (R)XXX100.00735990658279836462636768656769705000261750,000$
6Kyle MacLean (R)XX100.00694073637477876175626064626667425000254800,000$
7Ben Meyers (R)X100.00643693637182836279646160626768425000252925,000$
8Gustav OlofssonX100.00683889618076735730605864497072595000291775,000$
9Ashton SautnerX100.00674077567668855530545357457072355000301750,000$
10Dakota Mermis (R)X100.00654571637384826230646067507072355000301775,000$
11Brayden Pachal (R)X100.00754466648182816230635968536567425000254775,000$
12Jacob Moverare (R)X100.00723986638575835830615964506668585000264775,000$
13Vladislav KolyachonokX100.00673881637679816130636265526465715000232775,000$
14Philip Broberg (R)X100.00753995658979816330675864506365865000231925,000$
Scratches
1Kurtis GabrielX100.00403540403580904020404040302525115000312750,000$
2Brett RitchieX100.00403540613580904020404040307270115000313760,000$
3Drake CaggiulaXXX100.00703878646682816265635960617172355000303760,000$
4Austin PoganskiX100.00684081567778855762585960556870505000282750,000$
TEAM AVERAGE100.0066417961727982594960586154666747500
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Ivan Prosvetov (R)100.0063998088646766666755766573574600252750,000$
Scratches
1Kevin Boyle100.0040908050404040404040402525115000321702,020$
TEAM AVERAGE100.005295806952545353544858454934480
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Philip BrobergManitoba Moose (WPG)D2311314914039223010253.33%1442418.451231530000133100%000000.6600000030
Team Total or Average2311314914039223010253.33%1442418.451231530000133100.00%000000.6600000030
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Ashton SautnerManitoba Moose (WPG)D301994-05-27CANNo195 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm750,000$525,773$0$0$No---------------------------Link
Austin PoganskiManitoba Moose (WPG)RW281996-02-16USANo198 Lbs6 ft1NoNoN/ANoNo2FalseFalsePro & Farm750,000$525,773$0$0$No750,000$--------702,020$--------No--------Link
Ben MeyersManitoba Moose (WPG)C251998-11-15USAYes194 Lbs5 ft11NoNoN/ANoNo2FalseFalsePro & Farm925,000$648,454$0$0$No925,000$--------600,000$--------No--------Link
Boris KatchoukManitoba Moose (WPG)C/LW/RW261998-06-18CANYes206 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm750,000$525,773$0$0$No---------------------------Link
Brayden PachalManitoba Moose (WPG)D251999-08-23CANYes202 Lbs6 ft2NoNoAssign ManuallyNoNo42024-08-27FalseFalsePro & Farm775,000$543,299$0$0$No775,000$775,000$775,000$------600,000$600,000$600,000$------NoNoNo------Link
Brett RitchieManitoba Moose (WPG)RW311993-07-01CANNo215 Lbs6 ft4NoNoN/ANoNo3FalseFalsePro & Farm760,000$532,784$0$0$No760,000$760,000$-------600,000$600,000$-------NoNo-------Link
Dakota MermisManitoba Moose (WPG)D301994-01-05USAYes195 Lbs6 ft0NoNoAssign ManuallyNoNo12024-08-20FalseFalsePro & Farm775,000$543,299$0$0$No---------------------------Link
Drake CaggiulaManitoba Moose (WPG)C/LW/RW301994-06-20CANNo176 Lbs5 ft10NoNoN/ANoNo3FalseFalsePro & Farm760,000$532,784$0$0$No760,000$760,000$-------600,000$600,000$-------NoNo-------Link
Gustav OlofssonManitoba Moose (WPG)D291994-12-01SWENo199 Lbs6 ft2NoNoN/ANoNo12024-05-19FalseFalsePro & Farm775,000$543,299$0$0$No---------------------------Link
Ivan ProsvetovManitoba Moose (WPG)G251999-03-04RUSYes195 Lbs6 ft5NoNoN/ANoNo2FalseFalsePro & Farm750,000$525,773$0$0$No750,000$--------750,000$--------No--------Link
Jacob MoverareManitoba Moose (WPG)D261998-08-31SWEYes210 Lbs6 ft3NoNoAssign ManuallyNoNo42024-08-20FalseFalsePro & Farm775,000$543,299$0$0$No775,000$775,000$775,000$------600,000$600,000$600,000$------NoNoNo------Link
Kevin BoyleManitoba Moose (WPG)G321992-05-30USANo201 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm702,020$492,138$0$0$No---------------------------Link
Kurtis GabrielManitoba Moose (WPG)RW311993-04-20CANNo212 Lbs6 ft6NoNoN/ANoNo2FalseFalsePro & Farm750,000$525,773$0$0$No750,000$--------750,000$--------No--------Link
Kyle MacLeanManitoba Moose (WPG)C/LW251999-04-29USAYes190 Lbs6 ft1NoNoAssign ManuallyNoNo42024-08-27FalseFalsePro & Farm800,000$560,825$0$0$No800,000$800,000$800,000$------600,000$600,000$600,000$------NoNoNo------Link
MacKenzie EntwistleManitoba Moose (WPG)RW251999-07-14CANNo205 Lbs6 ft3NoNoN/ANoNo22024-08-21FalseFalsePro & Farm850,000$595,876$0$0$No850,000$--------600,000$--------No--------Link
Mackenzie MacEachernManitoba Moose (WPG)LW301994-03-09USANo193 Lbs6 ft2NoNoN/ANoNo12024-05-19FalseFalsePro & Farm775,000$543,299$0$0$No---------------------------Link
Matthew PecaManitoba Moose (WPG)C311993-04-27CANNo181 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm700,000$490,722$0$0$No---------------------------Link
Philip BrobergManitoba Moose (WPG)D232001-06-25SWEYes212 Lbs6 ft4NoNoTrade2024-11-20NoNo1FalseFalsePro & Farm925,000$648,454$0$0$No---------------------------Link
Sam GagnerManitoba Moose (WPG)C/LW351989-07-28CANNo200 Lbs5 ft11NoNoTrade2024-02-19NoNo22024-05-19FalseFalsePro & Farm775,000$543,299$0$0$No775,000$--------775,000$--------No--------Link
Vladislav KolyachonokManitoba Moose (WPG)D232001-05-26BLRNo193 Lbs6 ft1NoNoN/ANoNo22024-05-19FalseFalsePro & Farm775,000$543,299$0$0$No775,000$--------775,000$--------No--------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2028.00199 Lbs6 ft22.00779,851$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
138122
230122
322122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
138122
230122
322122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bakersfield Condors2110000078-12110000078-10000000000020.50071421002320114732212452202186201064100.00%50100.00%022251043.53%22061435.83%14336139.61%417293780159259111
2Bridgeport Islanders10001000431000000000001000100043121.00048120023201143822124522021511203211100.00%000%022251043.53%22061435.83%14336139.61%417293780159259111
3Charlotte Checkers1010000003-31010000003-30000000000000.0000000023201144222124522021308226100.00%10100.00%022251043.53%22061435.83%14336139.61%417293780159259111
4Chicago Wolves1000000145-1000000000001000000145-110.500481200232011414221245220214799142150.00%220.00%022251043.53%22061435.83%14336139.61%417293780159259111
5Cleveland Monsters1010000004-4000000000001010000004-400.00000000232011411221245220215714428000%20100.00%022251043.53%22061435.83%14336139.61%417293780159259111
6Colorado Eagles1010000016-51010000016-50000000000000.00012300232011414221245220214215226100.00%10100.00%022251043.53%22061435.83%14336139.61%417293780159259111
7Hartford Wolf Pack22000000963220000009630000000000041.0009182700232011411822124522021792028311100.00%10100.00%022251043.53%22061435.83%14336139.61%417293780159259111
8Hershey Bears21100000862211000008620000000000020.5008162400232011487221245220218616437300.00%2150.00%022251043.53%22061435.83%14336139.61%417293780159259111
9Iowa Wild1010000014-3000000000001010000014-300.000123002320114142212452202138449300.00%20100.00%022251043.53%22061435.83%14336139.61%417293780159259111
10Laval Rocket10000010321100000103210000000000021.0003470023201143122124522021319016100.00%000%022251043.53%22061435.83%14336139.61%417293780159259111
11Milwaukee Admirals1010000034-1000000000001010000034-100.00036900232011434221245220215819227100.00%10100.00%022251043.53%22061435.83%14336139.61%417293780159259111
12Rochester Americans1010000014-3000000000001010000014-300.0001120023201147221245220213410177100.00%20100.00%022251043.53%22061435.83%14336139.61%417293780159259111
13Rockford IceHogs11000000532000000000001100000053221.0005101500232011442221245220214716230000%10100.00%022251043.53%22061435.83%14336139.61%417293780159259111
14San Diego Gulls11000000541000000000001100000054121.0005101500232011435221245220213313823100.00%40100.00%022251043.53%22061435.83%14336139.61%417293780159259111
15Syracuse Crunch1010000026-41010000026-40000000000000.000246002320114392212452202149112202150.00%10100.00%022251043.53%22061435.83%14336139.61%417293780159259111
16Toronto Marlies1000000134-11000000134-10000000000010.50036900232011462221245220215813026100.00%000%022251043.53%22061435.83%14336139.61%417293780159259111
17Utica Comets1010000006-61010000006-60000000000000.000000002320114622124522021401228300.00%110.00%022251043.53%22061435.83%14336139.61%417293780159259111
18Wilkes-Barre/Scranton Penguins40400000019-191010000003-330300000016-1600.0000000023201143122124522021151501438800.00%7185.71%022251043.53%22061435.83%14336139.61%417293780159259111
Total24614010125697-411347000113350-171127010012347-24180.375561091650023201146982212452202110172718451431412.90%33584.85%022251043.53%22061435.83%14336139.61%417293780159259111
_Since Last GM Reset24614010125697-411347000113350-171127010012347-24180.375561091650023201146982212452202110172718451431412.90%33584.85%022251043.53%22061435.83%14336139.61%417293780159259111
_Vs Conference1639010123464-301035000112536-1160401001928-19120.375346599002320114475221245220216561705230724416.67%17570.59%022251043.53%22061435.83%14336139.61%417293780159259111

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2418SOL15610916569810172718451400
All Games
GPWLOTWOTL SOWSOLGFGA
2461410125697
Home Games
GPWLOTWOTL SOWSOLGFGA
134700113350
Visitor Games
GPWLOTWOTL SOWSOLGFGA
112710012347
Last 10 Games
WLOTWOTL SOWSOL
341011
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
31412.90%33584.85%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
221245220212320114
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
22251043.53%22061435.83%14336139.61%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
417293780159259111


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
518Manitoba Moose4Chicago Wolves5LXXBoxScore
627Hershey Bears4Manitoba Moose3LBoxScore
839Manitoba Moose0Wilkes-Barre/Scranton Penguins6LBoxScore
1156Wilkes-Barre/Scranton Penguins3Manitoba Moose0LBoxScore
1373Utica Comets6Manitoba Moose0LBoxScore
1586Manitoba Moose5San Diego Gulls4WBoxScore
17106Bakersfield Condors5Manitoba Moose2LBoxScore
21127Manitoba Moose1Rochester Americans4LBoxScore
23142Hartford Wolf Pack4Manitoba Moose6WBoxScore
25165Charlotte Checkers3Manitoba Moose0LBoxScore
28183Manitoba Moose0Wilkes-Barre/Scranton Penguins4LBoxScore
30196Hartford Wolf Pack2Manitoba Moose3WBoxScore
31213Syracuse Crunch6Manitoba Moose2LBoxScore
35236Manitoba Moose0Cleveland Monsters4LBoxScore
38253Manitoba Moose4Bridgeport Islanders3WXBoxScore
39266Colorado Eagles6Manitoba Moose1LBoxScore
42285Manitoba Moose5Rockford IceHogs3WBoxScore
43297Bakersfield Condors3Manitoba Moose5WBoxScore
46321Hershey Bears2Manitoba Moose5WBoxScore
47336Manitoba Moose0Wilkes-Barre/Scranton Penguins6LBoxScore
50354Laval Rocket2Manitoba Moose3WXXBoxScore
53367Manitoba Moose3Milwaukee Admirals4LBoxScore
55383Manitoba Moose1Iowa Wild4LBoxScore
58390Toronto Marlies4Manitoba Moose3LXXBoxScore
60400Manitoba Moose-Coachella Valley Firebirds-
62421Abbotsford Canucks-Manitoba Moose-
64435Manitoba Moose-Rochester Americans-
67455Bridgeport Islanders-Manitoba Moose-
72482Grand Rapids Griffins-Manitoba Moose-
75507Manitoba Moose-Toronto Marlies-
76516San Jose Barracuda-Manitoba Moose-
80534Manitoba Moose-Chicago Wolves-
85548Toronto Marlies-Manitoba Moose-
89576Providence Bruins-Manitoba Moose-
90591Manitoba Moose-San Jose Barracuda-
92604Utica Comets-Manitoba Moose-
95624Manitoba Moose-Texas Stars-
97637Manitoba Moose-Hershey Bears-
98646Belleville Senators-Manitoba Moose-
100668Syracuse Crunch-Manitoba Moose-
103688Manitoba Moose-San Diego Gulls-
104699Manitoba Moose-Charlotte Checkers-
106708Grand Rapids Griffins-Manitoba Moose-
108727Manitoba Moose-Providence Bruins-
110743Chicago Wolves-Manitoba Moose-
113763Manitoba Moose-Charlotte Checkers-
114772Chicago Wolves-Manitoba Moose-
117798Springfield Thunderbirds-Manitoba Moose-
120812Manitoba Moose-Syracuse Crunch-
123830Manitoba Moose-Hershey Bears-
125835Tucson Roadrunners-Manitoba Moose-
126849Manitoba Moose-Belleville Senators-
129864Manitoba Moose-LeHigh Valley Phantoms-
142874Charlotte Checkers-Manitoba Moose-
145898Wilkes-Barre/Scranton Penguins-Manitoba Moose-
147910Manitoba Moose-Calgary Wranglers-
149929Rochester Americans-Manitoba Moose-
150934Manitoba Moose-Ontario Reign-
152950Manitoba Moose-Utica Comets-
155968LeHigh Valley Phantoms-Manitoba Moose-
Trade Deadline --- Trades can’t be done after this day is simulated!
159995Wilkes-Barre/Scranton Penguins-Manitoba Moose-
1631008Manitoba Moose-Syracuse Crunch-
1661014Manitoba Moose-Laval Rocket-
1681027Manitoba Moose-Hartford Wolf Pack-
1701037Texas Stars-Manitoba Moose-
1731058Manitoba Moose-Hartford Wolf Pack-
1751071Henderson Silver Knights-Manitoba Moose-
1781094Manitoba Moose-Laval Rocket-
1811102Hartford Wolf Pack-Manitoba Moose-
1821103Manitoba Moose-Bakersfield Condors-
1871131Manitoba Moose-Chicago Wolves-
1911139Hartford Wolf Pack-Manitoba Moose-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance24,00112,483
Attendance PCT92.31%96.02%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
23 2806 - 93.55% 93,245$1,212,189$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
449,467$ 1,559,702$ 1,355,606$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
8,040$ 449,467$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,144,642$ 136 8,040$ 1,093,440$




Manitoba Moose Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Manitoba Moose Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Manitoba Moose Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Manitoba Moose Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Manitoba Moose Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA